In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation

نویسندگان

  • Angelika Zeilinger
  • Juraj Todt
  • Christina Krywka
  • Martin Müller
  • Werner Ecker
  • Bernhard Sartory
  • Michael Meindlhumer
  • Mario Stefenelli
  • Rostislav Daniel
  • Christian Mitterer
  • Jozef Keckes
چکیده

Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to -16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Brief Review of Nanoindentation Technique and its Applications in Hybrid Nanocomposite Coatings

Nanoindentation techniques are widely used for the study of nanomechanical properties of thin nanocomposite coatings. Theoretical concepts and practical use of nanoindentation method are summarized with reporting the applications of these tests in characterization of some particular thin nanocomposite hybrid coatings prepared by sol-gel process. The better mechanical properties can be obtained ...

متن کامل

Effect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies

Titanium nitride-Copper (TiN-Cu) nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of t...

متن کامل

Direct observation of tribological recrystallization

The fundamental processes of tribology related to friction, wear, and adhesion [1–3] are still not well understood [4,5]. When a single asperity touches and slides on a surface, complex phenomena such as local rearrangements of atoms, permanent change of the surface structure [6], and more macroscopic phenomena such as dislocation motion or microstructural changes can occur. As the interface is...

متن کامل

A Brief Review of Nanoindentation Technique and its Applications in Hybrid Nanocomposite Coatings

Nanoindentation techniques are widely used for the study of nanomechanical properties of thin nanocomposite coatings. Theoretical concepts and practical use of nanoindentation method are summarized with reporting the applications of these tests in characterization of some particular thin nanocomposite hybrid coatings prepared by sol-gel process. The better mechanical properties can be obtained ...

متن کامل

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016